TURING MACHINE TO COMPUTE BINARY CARRY SEQUENCE, NOVEMBER 2015

Turing Machine to Compute
Binary Carry Sequence

Kayla Brown, Maryville College, Computer Science and Mathematics Double Major

Abstract—The Binary Carry sequence is the sequence a,, =
{an—1,m —1,an_1} where n € N and a; = {0}. Its
application is to find the value of m for every m such that
2™ evenly divides n. The value of m can be found where n
is the n" position in the sequence and m is the corresponding
number. Despite the fact that the Binary Carry sequence appears
to be a relevant and valuable sequence, little research has been
conducted towards the applications of the sequence to practical
mathematical problems. We have created a Turing machine that
accurately computes each value of the Binary Carry sequence.
The Turing machine’s general and main m-configurations are
described in full detail in section II. Using the generated Turing
machine as a basis for further exploration, we can anticipate
future work to include the calculation of primes using the methods
describes and additional similar methods, the detection of new
patterns or sequences as a result of observing large value of n
in the sequence, and the further research of the optimization of
dissemination of information about traffic and road conditions
using the Binary Carry sequence. We are optimistic that the
development of this Turing machine will assist and promote
further research on the topic and prompt new discoveries in
the math world.

I. INTRODUCTION

The Binary Carry sequence is a seemingly useful sequence
in mathematics but has had little research and few known
applications. The sequence itself and some of the known
applications are described in the following subsections.

We have constructed a Turing machine, described in section
II, that computes the infinite Binary Carry sequence for all
values of n € N. The Turing machine will allow us to calculate
the n'"* position of the sequence at very large values of n.

Even though the Binary Carry sequence can be shown to
be an applicable and useful sequence, little fieldwork has been
conducted to see how we can apply it to practical mathematical
problems. We hope that the construction of this Turing machine
will assist and promote further research on the topic.

A. Binary Carry Sequence

For every natural number n, there exists a natural num-
ber m such that 2 to the power of m evenly divides n.
There exists such a sequence, the Binary Carry sequence,
that will indicate the value of m for every n. The Binary
Carry sequence can be derived using the recursive equation
an = {an—1,n —1,a,—1} where n € N and a; = {0} [1].
The first few derivations of the sequence are shown in the table
below.

<
3

DB W =
Sooco o
[—

S o oo

(SO SIS

[=N o]
—_—

S oo

30102
30102

102010
1020104010201030102010

The value of m for every n such that 2™|n can be found in
the sequence where n is the n'" position in the sequence and
m is the corresponding number. For example, to find the value
of m for 8 where 2|8, we will locate the]th position in the
sequence of which the corresponding value is 3. Therefore, the
highest power of 2 which evenly divides 8 is 3, hence 23|8.

B. Applications

The main purpose of the Binary Carry sequence is to
compute the highest power of 2 that evenly divides any natural
number, but the sequence corresponds to many other solutions
to problems in mathematics.

One of the more well-known problems that the sequence
corresponds to is the solution to the Tower of Hanoi. The
sequence directly corresponds to one less than the number
of disks to be moved at the n'" step in the optimal solution
to the Tower of Hanoi problem [1]. The Tower of Hanoi is
a mathematical puzzle that consists of three rods, and any
number of disks of different sizes which can slide onto any
rod. Following a given set of rules, the solved when all disks
are slid onto the last rod. It is left as a task to the reader to
conduct more research on the Tower of Hanoi if desired. To
visually show the correspondence of the two sequences, both
of the sequences are shown below.

Binary Carry {010201030102010401020103...}

Tower of Hanoi {121312141213121512131214...}

For another solution that the sequence corresponds to, we
must first find the parity of the Binary Carry sequence. The
parity of an integer is its attribute of being odd or even. To find
the parity of the sequence, we will replace each even integer,
including 0, with 1 and each odd integer with 0. The Binary
Carry sequence and its parity is shown below.

Binary Carry {010201030102010401020103...}

Parity {101110101011101110111010...}

The parity of the Binary Carry sequence corresponds to the
accumulation point of 2" cycles through successive bifurca-
tions [1]. This problem will not be described in this paper but
is left as a task to the reader if further information is desired.

TURING MACHINE TO COMPUTE BINARY CARRY SEQUENCE, NOVEMBER 2015

In addition to the sequence corresponding to solutions to
problems in mathematics, the sequence has been shown by an
MIT study to optimize the dissemination of information about
traffic and road conditions through networks of wirelessly
connected cars.

The algorithm is used in modelling the ordering of data
transmissions such that high-priority data is broadcasted more
frequently but low-priority data is not excluded. In this model,
lower numbers in the Binary Carry sequence, such as 0,
will represent high-priority data, while the larger numbers in
the sequence, such as 8, will represent low-priority data. We
can see from this model that the lower numbers occur more
frequently, hence the higher priority data is broadcasted more
frequently, and the larger numbers occur less frequently, hence
the lower priority data will still be broadcasted but not nearly
as often [2].

For this application, the algorithm is being tested by T. J.
Giuli, a technical expert on mobile computing at Ford Research
and Advanced Engineering. According to MIT News, Guili
says that “disseminating data through networks of cars will be
particularly useful in urban areas” and “’that networked vehicles
could also help propagate traffic information in rural areas
where cell towers — and, for that matter, hovering helicopters
and DOT sensors — are sparse” [2].

II. APPROACH

The Turing machine that has been constructed to compute
the Binary Carry sequence is described in the following
subsections. We will begin by describing the alphabet, legend,
and conventions of the Turing machine that will be used in the
description of the m-functions and m-configurations. Next, we
will describe the general m-functions and m-configurations that
will be used in the main table of our Turing machine. Then,
we will describe the main table and m-configurations of our
Turing machine. Finally, a proof of correctness is constructed
to prove that the machine works for any n € N3 n > 2.

A. Alphabet, Legend, and Conventions

The Turing machine used to compute the Binary Carry
sequence will be denoted as B¢.

The tape of B¢ uses the convention of alternating F-squares
and E-squares. Both F-squares and E-squares are readable and
writable where E-squares are used to mark the preceding F-
squares. The leftmost point of the portion of the tape used in
the computation is identified by the symbol o placed in a pair
of adjacent squares.

Because the following words and groups of words will be
used repeatedly throughout the description of ‘BE&, we will
abbreviate them with the indicated symbols. The legend of
the symbols and their meaning found in the descriptions of
m-functions and m-configurations of ‘B¢ is below.

Symbol Meaning
E Erase symbol from designated square
P Print symbol to designated square
L Move left one square
R Move right one square
v Any symbol is read in the current square
None No symbol is read in the current square
b)) The longest sequence of consecutive 1s on the tape

The alphabet of this tape consists of the following symbols.
The description of their use in the general case is also noted.

Symbol General Description
B Marks the beginning of the tape
feY Marks the F-square to the left of the beginning of X
§ Marks the last F-square in 3
w Marks the beginning of the next 3
P Marks the first F-square to the left of the symbol o
T Marks the most recent 1 copied to the end of the tape
¢ Marks the most recent O copied to the end of the tape
0 Represents the number 0
1 Represents the number mgp = 1 1. .. 1 of length mg + 1

Because a; = {0} and ¥ is of length zero for this sequence,
we will let the initial state of the tape used in the computation
of the Binary Carry sequence read

e[[0Ja 180 [.

which is the sequence of az = {0 1 0} such that o marks the
F-square to the left of the beginning of > and § marks the
last F-square in ¥. We will let this be the case so that our m-
configurations that require the detection of ¥ do not have to
consider the possibility that there does not exist any sequence
of 1s. If desired, one can implement additional m-functions to
initialize the tape in this manner.

B. General Purpose m-functions

The following m-functions are general functions. The
parameters are to be passed through the function when it
is called. In the following descriptions, o and J represent
symbols that are passed through the function and [represents
m-functions that are passed through the function. Each table
begins with the name of the function and its parameters,
then, based on the symbol that is read on the current square,
the function will then perform the designated operations and
move onto the final m-configuration.

{(8): move left The m-function performs the basic operation
L then moves to m-configuration f3.

m-config. Symbol ~ Operations Final m-config.
UB) L B
r(8): move right The m-function performs the basic oper-
ation R then moves to m-configuration f.
m-config. Symbol Operations Final m-config.
r(8) R B
rp(a, B): replace The m-function replaces the current sym-

bol with the symbol « then moves to m-configuration /.

m-config. Symbol Operations Final m-config.

rp(a, B) Pa 8

TURING MACHINE TO COMPUTE BINARY CARRY SEQUENCE, NOVEMBER 2015

me(a, 8): mark The m-function marks the current F-square
by printing the symbol « in the adjacent E-square then moves
to m-configuration /.

m-config. Symbol — Operations Final m-config.
me(a, B) RPa B
rm(a, B): erase The m-function erases the leftmost oc-

currence on the tape of the symbol « then moves to m-
configuration f.

m-config. Symbol Operations Final m-config.
rm(a, B) fla,rm1(B))
rm1(B) E B

pe(a, B): print at end The m-function prints the symbol «
at the end of the sequence of symbols on the tape then moves
to m-configuration /.

m-config. Symbol Operations Final m-config.

pe(a, B) f (3, pex(a, B))
A\ RR

) | pea)
None Pa B

pem(a, d, 3): print at end and mark The m-function prints
the symbol « on the F-square at the end of the sequence of
symbols on the tape and marks it with the symbol § then moves
to m-configuration /.

m-config.
pem(a, 5, B)

Symbol Operations Final m-config.

pe(a, me(8, B))

f(a, B): find The m-function finds the leftmost occurrence
on the tape of the symbol « then moves to m-configuration 3.

m-config. Symbol Operations Final m-config.
fm {0 - filen)
3 L fle, B)
fi(e, B) { @ A
a R fi(a, B)
f'(a,B): find and move left The m-function find the

leftmost occurrence on the tape of the symbol o, moves one
square to the left, then moves to m-configuration f3.

m-config.

f(a, B)

Symbol Operations Final m-config.

fle, 1(B))

f"(a, B): find and move right The m-function find the
leftmost occurrence on the tape of the symbol «, moves one
square to the right, then moves to m-configuration 3.

m-config.

£ (e, B)

Symbol ~ Operations Final m-config.

fla,r(B))

fr(a,d,8): find and replace The m-function find the
leftmost occurrence on the tape of the symbol «, replaces
the current symbol with the symbol &, then moves to m-
configuration /.

m-config.

fr(e, s,)

Symbol Operations Final m-config.

fla,p(5,8))

eof(): find end of tape The m-function moves to the start
of the tape, then looks for the first F-square with no symbol
then moves to m-configuration 3.

m-config. Symbol ~ Operations Final m-config.

eof(B) f(s,e0f1)

cof1(B) { A4 RR eof(B)
None 8

¢(a, 6, 8): copy The m-function copies the symbols in the
F-squares between the symbols « and ¢ to the end of the tape
then moves to m-configuration (3.

m-config. Symbol Operations Final m-config.
c(a, 8, B) I/ (e, e1(a, 8, 8))
er(en 6, B) { 0 R c2(e, 6, 8)
1 R c3(a, 6, B)
b ER ci1(e, 8, 8)
5 Pg pe(0,rm(e, B))
. 5
c2(8, 5) o ER c1(e, 6, B)
None P¢ pe(0, c(9, 6, B))
t ER c1(e, 6, B)
5 Pf pe(l, rm(t, B))
)6,
ca(e8,5) o ER c1(a, 8, B)
None Pt pe(1,c(t,9,8))

C. Main Table

The following m-configurations describe the process of
BC. The symbols in these tables are not arbitrary. ‘BE calls
the m-configuration mid first then continues to call the
indicated m-functions and will result in an infinite recursion.
Because the first m-function mid will find the end of the tape
regardless of the position of the current square, we can say
that that ‘B¢ will start with the current square on the F-square
with the symbol 9.

maid: Mark End Configuration The m-configuration mzed
marks the end of the tape with the symbol w then moves to
m-configuration Inc. This configuration therefore marks the
beginning of the next longest sequence of 1s because Inc will
place this sequence here.

m-config. Symbol ~ Operations Final m-config.
mid eof(midy)
maidy LPw Inc

TURING MACHINE TO COMPUTE BINARY CARRY SEQUENCE, NOVEMBER 2015

Inc: Print Next ¥ The m-configuration [nc copies the
current X to the end of the tape. Inc then replaces the symbol
w with the symbol « to indicate the beginning of the next
3. Finally, Inc prints the symbol 1 marked with the symbol
0 then the symbol O to the end of the tape and moves to m-
configuration ca. Now, the current X is between the symbols
a and 4.

m-config. Final m-config.
Inc c(a, d,lncy)
Incy fr(w, a,lncs)
Inco pem(1, 4, pe(0, ca))

ca: Copy sequence preceding 3 to end of tape The m-
configuration ca marks the beginning of the tape with the
symbol v then copies the sequuence between the symbols
and «, which is the sequence preceding Y, to the end of the
tape. Doing this results in the symbol « being erased, so ca
then moves to the m-configuration mb.

m-config. Final m-config.
ca £ (o, r(me(¥, caz)))

cas c(y, a, mb)

mb: mark 3 The m-configuration mb finds the F-square
marked with the symbol § and moves left over the preceding
F-squares until the sequence of 1s terminates, indicated by a
0 in the current F-square, then marks this F-square with the
symbol «, then moves to m-configuration mzd.

m-config. Symbol Operations Final m-config.
mb f'(8, mb1)
mby { 1 LL mby
0 me(a, mid)

D. Proof of Correctness

Let n € N|n > 2 and a, = {ap—1,n—1,ap_1}
where {n +m} | m € Z represents the longest sequence of
consecutive 1s. Let *B€ be the Turing machine described in
the previous subsections. If we observe the state of the Turing
machine succeeding m-configuration cay and preceding the
m-configuration mib, it is clear that the state describes the

sequence of a,—1 = {an—2,n—2,a,_2}.
First consider n = 3. By observation, the tape preced-
ing the m-configuration mib of computing n = 3 reads

{a2} = {0,1,0}. BC finds the ¥ in {az}, which is {1},
and copies this sequence to the end of our tape then prints an
additional 1. Now, the tape reads {as,1,1} = {a2,2}.

Next, B copies from the beginning of the tape to the
beginning of {2} to the end of our tape. Now the tape reads
{a2,2,as}, which by definition is equal to the sequence as.
Hence, ‘B¢ successfully computes a,, for n = 3.

Now we consider the sequence a,, of n for any n > 3.
B finds the ¥ in {a,_1}, which is {n — 2}, and copies this
sequence to the end of our tape then prints an additional 1.
Now, the tape reads {a,—1,n — 1}.

Next, BC copies from the beginning of the tape to the
beginning of {n — 1} to the end of our tape. Now the tape
reads {a,_1,n — 1,a,_1}, which is equal to the sequence of
a, by definition. Hence, B¢ successfully computes a,, of n.

Now consider n + 1. B repeats the process as before, first
by finding the ¥ in {a,}, which is {n — 1}, and copies it to
the end of our tape followed by printing an additional 1. Now
our tape reads {a,,n}.

As before, BC then copies from the beginning of our tape
to the beginning of {a, } to the end of our tape. Now the tape
reads {a,,n,ay}, which is equal to the sequence of a,;1 by
definition. Hence, B¢ successfully computes a,,+1 of n + 1.

Therefore, by induction, B¢ successfully computes
the sequence a, for V.2 € N | n > 2 and
ap = {anflyn_lyanfl} n

III. CONCLUSION

We have constructed a Turing machine that we have proved
to successfully compute the Binary Carry sequence for any
neN|n>2.

Further research on the topic can include continuing testing
the use of the sequence to optimize the dissemination of
information about traffic and road conditions through networks
of wirelessly connected cars.

Future work on the topic can include implementing the
Turing machine to calculate significantly large values of n.
Perhaps a pattern different from a,, = {an—1,7—1,a,-1}
can be detected when the values of n begin to approach
numbers that are large enough to be referred to as infinity.

Another possibility for future work is to determine primes
using the Binary Carry sequence and sequences like it. The
Binary Carry sequence is used to compute the value of m € N
for every n € N such that 2™|n where n is the n*" position
in the sequence and m is the corresponding number. The first
step to computing primes using this approach is to discover
sequences that indicate the value of m € N for every n € N
such that 3"™|n, 4™|n, 5™|n, and so on. The next step would
be to create a Turing machine to compute the values of
each position in the sequence for every sequence we have
discovered. Then, for the i*” position in any sequence, a Turing
machine exists to calculate the sequence that indicates the
value of m for i"*|n. When all the Turing machines are ran
simultaneously, we are able to observe every natural divisor of
every natural number. For any ith position in any sequence,
say we observe that every corresponding m value is 0 except
for in the sequence which indicates the value of m for i"*|n
such that this value is 1. Hence, the number ¢ has only the
divisor of itself and 1, therefore ¢ is prime.

While the Binary Carry sequence is shown to be an applica-
ble and useful sequence, little research has been conducted to
see how we can apply it to practical mathematical problems.
We are optimistic that the construction of this Turing machine
will assist and promote further research on the topic as
described and lead to new discoveries in the math world.

TURING MACHINE TO COMPUTE BINARY CARRY SEQUENCE, NOVEMBER 2015

(1]

(2]

REFERENCES

E. Weisstein, Binary Carry Sequence, MathWorld — A Wolfram Web
Resource, 2015. [Online].
Available: http://mathworld.wolfram.com/BinaryCarrySequence.html.
[Accessed: 01 Nov 2015].

L. Hardesty, Cars as traffic sensors, MIT News, 2010. [Online].
Available: http://news.mit.edu/2010/cars-sensors-0924. [Accessed: 02
Nov 2015].

